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Abstract 

As new space missions from earth to the planets are designed, the requirements 
for accurately estimating the trajectory in flight will in general increase to com- 
plement the more complex scientific desires. Conventional methods of in-flight 
orbit determination, such as two-way-doppler and range measurements from 
one or more ground tracking stations, have demonstrated the high accuracy that 
can be achieved. Traditionally the accuracy of orbit estimation becomes very 
good near the planet when the spacecraft speeds up under the planet’s gravita- 
tional attraction and thus as the doppler changes are magniiied. The purpose of 
this study is to analyze the geometrical properties of spacecraft doppler measure- 
ments made near a planet and to show that under certain situations an orbit- 
determination program could converge to an incorrect solution for the planet- 
centered inclination of the spacecraft hyperbolic orbital plane. Ways of correcting 
the situation are also presented. 
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An Ambiguity in the Orbit Determination 

of Planetary Flyby Trajectories 

I .  Introduction 
The primary concern in the determination of the orbit 

of a spacecraft during a mission is to estimate the miss 
vector and the time that the spacecraft will fly by the 
planet. The knowledge of these parameters is important 
to the success of the mission if precision-pointing instru- 
ments aboard the spacecraft are to scan the planet. An 
initial uncertainty of the spacecraft’s position and velocity 
in heliocentric space prior to planet arrival will result in 
a position uncertainty as the spacecraft passes the planet. 
Figure 1 demonstrates this position uncertainty. As the 
spacecraft approaches the planet and speeds up under the 
planet’s gravitational influence, the orbit determination of 
the spacecraft’s near-planet trajectory becomes more accu- 
rate. This occurs because the velocity of the spacecraft is 
changing more rapidly at this time, which in turn causes 
the scalar speed (range rate) between the earth and the 
spacecraft, and thus the doppler-frequency measurement, 
to change more rapidly. 

During the investigation of geometrical properties of 
trajectories near a target planet, dual solutions for the 
planet-centered inclination of the spacecraft’s flyby tra- 
jectory plane have been found that will produce a 
near-identical doppler time history as well as earth-to- 
spacecraft range time history past the planet. In other 
words, for every planet-centered trajectory inclination 

f PLANET \ 1 

/ // 

‘SPACECRAFT FLYBY 
TRAJECTORY 

&’ 1 s  PACECRAFT 

-POSITION 
UNCERTAINTY 

Fig. 1.  Description of flyby pass 

or orientation that is selected for the spacecraft’s ballistic 
flyby at the planet, another inclination can be found (but 
with the other orbital elements being the same) that will 
produce a near-identical time history of the doppler and 
earth-to-spacecraft range past the planet. For identifica- 
tion purposes let us define the other inclination as the 
“image” inclination. Prior to this investigation, it was 
thought that every trajectory that passed the planet has 
a unique doppler and earth-to-spacecraft range time 
history past the planet. The parameter time histories 
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are identical for the two inclinations if the vector from 
the earth-based observer to the spacecraft is held fixed. 
Allowing the position vector to vary realistically, for a 
spacecraft that approaches the target planet and for dis- 
placements of the spacecraft that result from rotating the 
trajectory plane, produces a range-rate time history 
slightly different for the two inclinations. The difference 
depends on the approach geometry of the spacecraft near 
the planet. The range time history of the two inclinations 
is still the same to within the expected accuracy of the 
measurements. The dual solutions of inclination for a 
given range and range-rate time history are symmetric 
about a plane that contains the earth, the planet, and the 
approach asymptote of the near-planet trajectory, as 
shown in Fig. 2. In this figure the trajectory inclination is 
measured from the plane that contains the approach 
asymptote and the direction to the earth. 

a given doppler and earth-to-spacecraft range time history 
are given in the subsequent discussions. 

The direct implications of the dual solutions are that an 
orbit-determination procedure using doppler measure- 
ments and/or range measurements might converge to the 
incorrect image solution for the planet-centered inclina- 
tion of the trajectory plane. This could happen if the 
initial estimated flyby trajectory is located such that 
the a priori dispersions of inclination encompass both the 
image and the nominal inclination. The derivations for 
the dual solutions of the trajectory-plane inclination for 

L- IMAGE INCLINATION 

f /  "/ / 

6 ,  OF THE TWO SPACECRAFT 

SAME AT A GIVEN TIME T 

EARTH u 
PLANE CONTAlNS DIRECTION TO 
EARTH AND APPROACH ASYMPTOTE 

Fig. 2. Description of dual solutions for inclination 

Simplifying assumptions are made to the geometry of 
the doppler observable to enable the partial differentia- 
tion to be easily managed. For an example problem, these 
partial derivatives are then used in a recursive orbit- 
determination program to show that incorrect conver- 
gence to the trajectory image inclination can result under 
certain situations. A spacecraft-centered angular mea- 
surement is then taken in conjunction with the doppler 
measurement to show that correct convergence results. 
Other means of assuming a correct convergence are also 
discussed. The numerical results are obtained for the ex- 
ample trajectory by using an IBM 1620 digital computer. 

I I .  Derivation of Observables 

For radar observations, the basic measurement is an 
integrated doppler-frequency shift. This measurement can 
be converted to the range rate j of the spacecraft with 
respect to the observer on earth (Ref. 1). Hence in this 
study the range rate will be considered as an observab1e.l 

A second observable used in the study is the spacecraft 
angle p between the direction to a star and the planet as 
measured by an on-board sensor. The star Canopus is 
used as the reference star for the angular measurement. 
The literature (Refs. 2 and 3) indicates that two angular 
components could be measured for approach guidance. 
The angle between the sun and the planet, called the cone 
angle, could be taken as one measurement type; the angle 
between two planes, one plane containing the sun-to- 
spacecraft-to-Canopus vector and the other plane con- 
taining the sun-to-spacecraft-to-planet vector, called the 
clock angle, as the second measurement type. It is assumed 
that the spacecraft is oriented by a two-axis sun sensor 
that points the roll axis toward the sun, and by a single- 
axis star sensor that acquires the star Canopus and holds 
the spacecraft fixed in roll. Another optical device that 
finds the center of the visible disk of the target planet 
completes the measurement system. For simplicity and for 
the purposes of this study, only one type of angular mea- 
surement-the spacecraft-centered angle between the star 
Canopus and the target planet-is used. This angle differs 
from the two angles previously described. However, the 
conclusion of the study should not change with the sub- 
stitution or inclusion of one or more types of angular 
measurement. Figure 3 shows the graphical explanation 
of the two observables used in this report. 

'The terms obseroable and measurement are assumed to be inter- 
changeable in this report. 
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Figures 4 and 5 show the graphical explanations of range 
rate and some of the defined vectors. 

Fig. 3. Description of the observables 

A. Simplified Range-Rate Computation 

the spacecraft can be expressed as 
The range rate between an earth-based observer and 

1. The obseroer-to-spacecraft direction vector. The 
direction fi from an earth-based observer to the spacecraft 
near the planet %an be expressed in terms of a coordi- 
nate system 8,&, T used at the Jet Propulsion Laboratory 
(Ref. 4). 

A 
The unit vector S is along the approach asymptote of 

the spacecraft’s hyperbolic conic with respect to the 
planet. For a given launch date at earth and arrival date 

A 
1; = V S / E .  p 

where 

V S / B  = - Y E  + v 
Since 

v S / E  = - Y E  VI’ -k v S / P  Fig. 4. Description of range rate 

it follows that 

i = ( - v E  $ - V p f V S / I ’ ) * f i  

where 

VSIE = velocity of the spacecraft with respect to the 

V E  = heliocentric velocity of an observer on earth at a 

observer on earth 

given time 

V = heliocentric velocity of the spacecraft 

V p  = heliocentric velocity of the center of Mars at a 

VSIp = velocity of the spacecraft with respect to the 

p = the unit vector from an observer on earth to the 

given time 

center of the planet at a given time 

spacecraft at a given time 

A 

Fig. 5. Heliocentric view of spacecraft 
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A 
at the planet, the direction of S is almost constant, inde- 
pendent of the orientation of the spacecraft's trajectory 
plane with respect to the encounter planet. AQpendix A 
reveals more information on the definition of S. 

A A 
The unit vector T is in a plane perpendicular to S and 

is parallel to a given plane (such as the ecliptic) and is 
given by 

A 
where P is along the ecliptic north pole, and 

A A A  
R = S X T  

The observeritoispacecraft direction 8 can then be ex- 
pressed in the R, S, 'f system as 

(2) 
$ = (b*!$)8 + (;*$') 'f + (p A . A  R)R 

From Fig. 6 the following definitions are readily obtained: 

I 
A A  

h A  

A 

p - s =  -cos& 

p T = sin C E  cos vE 
p * R  = sin&sinvg 

(3) 

Substituting Eqs. (3) into Eq. (2) yields 

fi= -coslns + sin<,cosrlgT + sincssinvEfi 
A A 

(4) 

As shown in Fig. 6, the angles <E and qE define the direc- 
tion from the observer to the spacecraft in the approach- 
asymptote coordinate system. The parameters vary only 
slightly with time when the spacecraft is 
vicinity of the planet. 

EARTH 

in the near 

2. Velocity of spacecraft with respect to the planet. The 
velocity of the spacecraft with respect to the target planet 
is assumed to be that resulting from two-body motion. 
This is an approximation, which becomes more accurate 
as the spacecraft nears the planet. The velocity V,,, is 
then the time derivative of the radius vector r from the 
target planet to the spacecraft. 

The radius of the spacecraft from the target planet for 
two-body celestial mechanics can be expressed as 

A A 
r = -rcosaS + rsinab (5) 

where 

r =  

a =  

A 
S =  

b =  

b =  

A 

distance from planet center to the spacecraft 

the planet-centered anglft from a planet-centered 
unit vector (parallel to -S) to r 

direction of the approach asymptote 

b 
a unit vector along b, i.e., - 

the perpendicular vector (called the miss param- 
eter) from planet center to 4 and lies in the trajec- 
tory plane of the spacecraft with respect to the 
target planet 

lbl 

Figure 7 describes some of these hyperbolic parameters. 

The distance r ,  as derived in Appendix B, is given as 

where 

a = semimajor axis of the hyperbolic orbit and is equal 
to 4% 

PLANET / PARALLEL TO 
APPROACH ASYMPTOTE 

APPROACH 
ASYMPTOTE 

Fig. 6. Description of earth's direction 

4 

Fig. 7. Description of hyperbolic parameters 
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E/. = gravitational constant of planet 

V, = hyperbolic excess speed of the spacecraft with 
respect to the planet (described more fully in 
Appendix A) 

b = I b 1 ,  semiminor axis of the hyperbolic orbit (also 
referred to as the miss parameter) 

The velocity V.T,p can be derived by taking the time 
derivative of r in Eq. (5)  as follows: 

. A  A 
Vs/r. = r = S ( -i cos a! -1- r d! sin a!) + b (;sin a! + r &  cos a)  

(7) 

The expressions for i and & can be obtained from 

r 2 &  = bV,  

which is the angular momentum equation, and from 

. dr . 
r = - a  

rlcy 

where 

dr a@ b 
- dor = - ,(,cosa + sina! 

which is obtained by taking the derivative of Eq. (6). Sub- 
stituting these expressions into Eq. (7) yields 

A 
sina S+-(cosar-l)b ) b i ,  V S / P  = (v, + - 

bV, 

(8) 

(9) 

where 
h A A 
b = cosBT + sineR 

A A 
The angle 0 is measured from the T axis clockwise to b. 
Hence, e gives the orientation of the trajectory plane, 
as shown in Fig. 8. Substituting Eq. (9) into (8) yields 

sina s 
) A  

VS,, = (v, + bV, 

3 
PLANET 2 

f 

APPROACH 
ASYMPTOTE a 

Fig. 8. Description of trajectory-plane orientation 

3. Simplified range-rate equation. As previously shown, 
the range rate can be expressed as 

(11) 
i = (-v, + V,) 8 + VS,, A p 

Substituting Eqs. (4) and (10) into (11) yields 

6 = (-v, + V,).p - V,cos& A 

P + - {(cos a! - 1) sin CE cos ( 7, - e) - cos t sin a} 

(12) 

by, 

Several observations concerning Eq. (12) are discussed 
below. 

The unit vector 6 is directed from the observer to the 
spacecraft. The time-varying parameters [ E  and 7, define 
the direction of 8. At a given time T,  the vector p" will 
undergo an infinitesimal change for a small displacement 
of the spacecraft near the planet, assuming that the 
observer-to-spacecraft distance p is very large. 

The expression ( -VE + V,) is the velocity of the planet 
with respect to the observer on earth at the time mea- 
surement. If a given time T is considered when the space- 
craft is near the planet, then (-V, + Vp> is fixed, 
independent of the other parameters. Also, the gravita- 
tional constant E/. of the planet is considered fixed. 

The parameter b defines the distance by which the 
spacecraft will miss the planet. Usually an uncertainty of 
a few hundred kilometers exists in the estimate of this 
parameter a few days before the spacecraft passes the 
planet. 

The parameter 0 defines the orientation of the space- 
craft's trajectory plane near the planet (see Fig. 8). Usu- 
ally an uncertainty of several degrees will exist in this 
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parameter, depending on miss distance, a few days before 
the spacecraft passes the planet. 

The parameter V ,  defines the hyperbolic approach 
speed of the spacecraft with respect to the planet. A 
given launch date at earth and arrival date at the planet 
will almost determine the approach speed precisely, inde- 
pendent of miss distance and near-planet trajectory plane. 
However, a small uncertainty in the geometry exists. 
Appendix A gives more detail on the parameter. 

The parameter a defines the position of the spacecraft 
in its hyperbolic orbit at a given time and is a function 
of p ,  V,, b, T (time of periapsis passage), and T (the time 
at which the spacecraft measurement is taken). Note that 
for a = 0 (when the spacecraft is theoretically an infinite 
distance away) the expression simplifies to 

(13) 
A i = (-v, + V,) ' p  - v,cos %n. 

Also, if p = 0 (no planet mass is present), the expression 
is the same during the entire encounter period. 

In Eq. (12) note that the parameters 8 and ve appear 
only in the expression as cos(7, - 8). The difference of 
(7, - 8) can be thought of as the angular orientation 
of the trajectory plane from some other reference plane. 
The approach asymptote-to-spacecraft-to-earth plane is a 
convenient reference plane and is used in the subsequent 
sections. Figure 9 demonstrates the angular difference of 

s 
/- 

PLANET 
n 

(7, - 8). In the diagram the vector 8 has been translated 
in position (with the direction unchanged) to a planet- 
centered coordinate system for convenience instead of the 
spacecraft-centered system. The parameter can take on 
positive or negative values, depending on whether vE is 
greater or less than e. Since the equation only depends on 
cos (7, - e), the equation will yield the same value for 
*(vE - 8). Thus for every aiming-point orientation of 
8 = 01, on one side of the asymptote-earth plane, an image 
aiming-point orientation of 8 = ( 2 ~ ~  - 8,) exists that will 
produce the same range rate at a given time before the 
closest approach to the planet. This statement assumes 
only that upon rotating the trajectory plane the resulting 
displacement of the spacecraft at a given time T will 
change the direction from the earth-based observer to the 
spacecraft by a negligible amount. 

B. Angular Measurement Computation 

To distinguish which of the two planet-centered trajec- 
tory orientations the spacecraft might have, an additional 
measurement would be a possibility. The measurement 
chosen in this study is the spacecraft-centered angle be- 
tween a far-away celestial body and the planet. The far- 
away celestial body could be the sun, another planet, or 
a star. To simplify the problem, a star is chosen, since 
its direction is fixed in space at any given timee2 

'The star Canopus is used in the numerical results presented in 
Section V. 

h 

T 

f 
3 

I 

DIRECTION FROM / EARTH 

p^ 

6 

Fig. 9. Description of angular difference (vE - 81 
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A 
The direction C from the star to the spacecraft is ex- 

pressed in the same manner as the earth-to-spacecraft 
direction in Eqs. (2)  and (3). The vector is then expressed 
as 

A A h  A h A  6 = ( C ~ S  +(e*+)+ + (C-R)R ( 144 

h 
s 

A 
T 

where 
A h  c - s  = - cos Cf* 

C O T  = + sinCf.cosqr. 

C O R  = + sinCcsinyc 

A A  

A I \  

Figure 10 shows the graphical explanation of the angles 
%c and qc. 

When Eqs. (5) and (9) are combined, the direction from 
the planet to the spacecraft can be expressed as 

A h A 

$ =  -cosaS$sinacosOT+sinasinOR (15) 

The desired angular measurement p, shown in Fig. 11, 
can be expressed as 

A 
cosp = ( C 4 )  

where 0 L p 4 180. Substituting Eqs. (14a), (14b), and 
(15) into the above expression for p yields 

COS p = COS CY cos lc + sin a sin e, cos (qc - 6) (16) 

The angles cc and qc of Eq. (16) define the direction 
from the star to the spacecraft in an asymptote-oriented 
coordinate system. For a given launch date and arrival 
date, these parameters are almost fixed. However, a small 
uncertainty exists in the values of the parameters because 
of the uncertainty in the precise;direction of the approach 
asymptote and the precise direction to the star. 

Note that vc and 6 of Eq. (16) appear in the angular 
expression as cos(vc - e), which is the same form for 
ve and 6' in the range-rate expression of Eq. (12). Thus 
if vC is equal to vE, the angular measurement will not help 
in determining which of the two trajectory orientations 
(0 = 8, or e = 2vE - e,) the spacecraft might have. This 
would take pl%ce if the earth were used in the angular 
measurement C = b, instead of another body such as a 
star. Thus one would not choose the earth for one of the 
bodies in the angular measurement to resolve the tra- 
jectory orientation ambiguity. Also, one would not use 
the earth-to-spacecraft range as a measurement to resolve 
the ambiguity because of the same type of phenomena. 
This will be discussed in more detail in Section VI. 

DIRECTION 
FROM 
STAR 

Fig. 10. Description of star's direction 

Fig. 11. Description of spacecraft angular measurement 

111. Derivation of Partial Derivatives 

A. Assumptions 

In this section, the partial derivatives of the observables 
with respect to the independent variables are derived 
for the orbit-estimation procedure described in Section IV. 
To simplify the derivation of the partials and to make 
the task manageable, the following specific assumptions 
are made concerning the model: 

(1) The first assumption is that the observer measuring 
the range rate is at the center of the earth. This 
assumption should not affect the conclusions of this 
study. However, future studies should probably 
place one or more stations on the earth's surface 
and should include the station location uncertain- 
ties. 

(2) The second assumption is that the gravitational 
constant p. of the planet and the ephemeris posi- 
tions and velocities of the earth and planet are 
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known. Again, these assumptions should not affect 
the conclusions of this study, but for completeness, 
future studies should include their uncertainties. 

(3) The third assumption is that the spacecraft’s motion 
with respect to the target planet is that of two- 
body motion. Also, the direction of the approach 
asymptote 8 is assumed not to change with time; 
however, an uncertainty in the exact direction of 
this vector is included in the analysis. These as- 
sumptions should be accurate enough for near- 
planet orbit-determination studies. 

(4) The fourth assumption is that the vector fi from 
earth observer to spacecraft remains fixed for dis- 
placements of the spacecraft near the planet and 
also during the total time that the spacecraft ap- 
proaches the planet. This assumption should affect 
the accuracy of the partials by only a small amount 
when the spacecraft is close to the planet. How- 
ever, the accuracy of this assumption will be de- 
graded the further away the spacecraft is from the 
planet. The partial derivative of i with respect to 
an independent variable, say q, takes the form of 

where 

VS/E = -VI3 + VP + VS/P 

Equation (17) is the result of taking the derivative 
of Eq. (1). The first part of Eq. (17) will definitely 
dominate the total partial when the spacecraft is 
close to the planet and the spacecraft velocity is 
changing. However, when the spacecraft is far 
away from the planet, the second part of the ex- 
pression might dominate the term for the inde- 
pendent variables of b, 8, and T .  Future studies 
should include a non-fixed direction for 8. Modi- 
fied equations for the start of such a study are 
given in Section VI. However, in this study fi is 
assumed to be fixed, which makes 

and thus the partial derivative of range rate with 
respect to the independent variable q will have the 
form of 

B. Independent Variables 

For the computation of range rate i, the six independ- 
dent variables are b, 6, V,, T E ,  &, and T, where 

b = m i s s  parameter, or semiminor axis of spacecraft 
hyperbolic orbit with respect to target planet 

8 = orientation of spacecraft trajectory plane (planet- 

V ,  = spacecraft hyperbolic excess speed with respect 

centered) 

to target planet 

T = time of periapsis passage or closest approach to 

define the direction from the 

planet 

and the angles vE an$ 
approach asymptote S to the earth. 

For the angular measurement p, the six independent 
variables are b, 8, V,, qc, &, and T. The angles qc an9 lC 
define the direction from the approach asymptote S to 
the star. 

The velocities VI( and V, are not dependent on the 
above independent variables and from Eq. (18) the par- 
tial derivative of range rate with respect to an indepen- 
dent variable, say q, will thus take the form of 

or 

A where q = b, 8 ,  V,, etc., and p is a fixed unit vector from 
the earth-based observer to the spacecraft. 

C. Basic Equations 

The basic equations by which the partial derivatives 
can be derived are now reviewed. The equations that 
give the observables p and p are 

P + - {(COS a! - 1) sin%, COS (78 - 8 )  -COS [E sina} 

(19) 

(20) 

bV, 

and 

cosp = co~5~coscw + sin&sina!cos(7c - 8) 
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where O L p L l 8 0  deg. The equation that relates the 
time of the observation to the independent variables is 

n ( T - r ) =  - F + e s i n h F  (21) 

where 

n = the mean angular motion and is equal to V:/p 

T = time of the observation 

T = time of closest approach (periapsis passage) be- 
tween spacecraft and the planet 

F = eccentric anomaly of hyperbola 

e =the eccentricity of the hyperbolic orbit and is 
equal to (a2 + bz)G/a 

a = the semimajor axis of the hyperbolic orbit and is 
equal to p / V :  

The equation that relates b to a, a to a! and a to F is 

b’ 
a(ecosh F - 1) = 

D. Partial Derivatives 

The partial derivatives of the observables i and p with 
respect to the independent variables can be expressed as 
follows: 

a p  ap a, a p  a, aF 
av, a@ av, a, a F  av, -=--+--- 
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where the following partials can be derived by the use of Eqs. (19) through (22): 

($)=-- ’ {sin cD cos (7, - e) [cos a - 11 - cos C, sinal 

- a;--- - {sin c, cos (vE - e) sin a + cos <, cos a> ’ 
aa bV, 

bY ( r  + a) 
a2 rez 2b - rsina - 

a b -  r (bcosa+as ina)  
- aa - 

ae b2 sinh F 
- 

a, _-  
i3F - T2(bcosa+asina) 

&“e‘! - + (sinh F )  ( ”’) 3aF -~ - 
aF 
av, r v m  raeT7, 
-- 

- - +/sin <, cos (7, - e )  [cos a - 11 - cos (&) - bV; 1 

a p  
aa sin ,l3 

sin ~r cos cc - cos a: sin lC cos (vC - e )  -= 

sin Q! sin cC sin (vC - e)  
sin p 

cos a sin - sin a: cos cos (qC - 0) (%) = sin p 

The partial derivatives in Eqs. (23) and (24) that are inside the parentheses have the meaning of the explicit partial 
differentiation of the observable with respect to the independent variable. 
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IV. Application of Recursive Estimation Theory 

The orbit-determination theory used in this investiga- 
tion is based on the linear filter theory proposed by 
Kalman (Ref. 5). The theory is utilized in this investiga- 
tion by assuming that linearized changes in the observ- 
able will result from small changes in the state variables. 
The covariance matrix and estimated variables are up- 
dated at each successive time increment along the space- 
craft orbit. 

The covariance matrix of the uncertainties of the esti- 
mated variables at each time is expressed (Refs. 5, 6) as 

A = A, - A,AT [AAIAT + h]- lAAl  (25) 

where A, is the covariance matrix of the variables at the 
preceding time. The new estimated values for the vari- 
ables can be expressed as 

When only range rate is used as an observable, the 
matrices take the form of 

where yl is the estimate of the variables at the time T 
based on previous measurements using range-rate mea- 
surements only. 

The matrix Ar i s  the change in the estimated variables 
based on the current range-rate measurement and is 
described as 

When range-rate and spacecraft angular measurements 
are used as observables, the matrices take the form of 

N 

q1 = 
N and Aq = 

The matrix Ayis defined as 

Ay= A1 AT [A A, AT + A]-l [AY] 

where [AY] is the residual matrix given as 

LAY1 = [ ( i n  - s)l 
for utilizing only range-rate measurements, and by 

for using range-rate and angular measurements together. 

Several quantities used in the preceding equations are 

Pn = the theoretical observed spacecraft angular mea- 
surement, and its value is determined using the 
nominal trajectory 

,B = angular measurement computed from the esti- 
mated values of the independent variables 

in = the theoretical observed range rate, and its value 

r; = range rate computed from the estimated values 

h = covariance matrix of the observables. For range- 
rate measurements, X is a scalar quantity ex- 
pressed as 

defined as follows: 

is determined using the nominal trajectory 

of the independent variables 

For using range-rate and angle measurements 
together (uncorrelated), h. is expressed as 
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U; = the standard deviation of the data noise on the 
range-rate measurement; in the results the devia- 
tion is for a 1-min sample 

up = standard deviation of the angular measurement 
for a 1-min sample 

AT= the time between each desired measurement 
along the orbit in minutes 

A = the matrix of partial derivatives. If only range- 
rate measurements are used, A is expressed as 

a i  a; a; a; ab a; 
ab a s  av, a, a%, aT 

A =  ------ 

If range-rate and angular measurements together 
are considered, A is expressed as 

A =  I 

The covariance matrix of the estimated variables has the 
form of 

A =  1 

if only range-rate measurements are considered, and has 
the form of 

if range-rate and angular measurements together are con- 
sidered. The variances of the independent variables are 
the elements of the diagonal of the matrix. 

To simplify the problem, noise will not be added 
directly to the range-rate and angular measurements. 
However, an uncertainty in the measurements will be 
assumed. In other words, the values for the observed 
range rate and spacecraft angle will be computed using 
the nominal trajectory with no noise added; however, 
in the matrix manipulations an uncertainty in the mea- 
surements will be assumed. These uncertainties are con- 
tained in the X matrix. The result of this simplification is 
that the estimated variables will converge to their proper 
values faster and more smoothly than if noise had been 
added. However, the conclusions of the study should not 
be affected. 

One reason for using a recursive filter theory in this 
investigation, instead of other estimation procedures, is 
the reduction in machine time for running the various 
cases. Inverting matrices, such as 6 X 6 or 8 X 8, requires 
much machine time for many computations along the 
trajectory. By using the recursive filter theory, the maxi- 
mum matrix size that has to be inverted is a 1 X 1 using 
range-rate measurements with six independent variables 
to be estimated, and a 2 X 2 using the range-rate and 
angular measurements together with eight independent 
variables to be estimated. 

V. Numerical Results 

The numerical results presented in this section were 
taken from a double-precision orbit-estimation program 
utilizing the IBM 1620 digital computer. The program 
uses the estimation procedure and equations given in 
Sections I11 and IV. The program is started 10 days prior 
to the spacecraft's closest approach to the planet and 
incremented in time. The time increments were selected 
such that the changes in the partial derivatives were less 
than 50%. 

A. Example Trajectory 

The example trajectory used in the results is a ballistic 
trajectory from earth to Mars. The approach character- 
istics selected at Mars are typical of a launch date in the 
middle of February 1969) with an arrival date at Mars 
at the beginning of August 1969. This selection is repre- 
sentative of the Mariner Mars 1969 flyby mission to be 
conducted by the Jet Propulsion Laboratory. The nominal 
values used for the independent variables are as follows: 
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b = 7000 km (impact parameter) 

0 = 25 deg (orientation of trajectory plane) 

V, = 7 km/sec (approach speed) 

qE = 30 deg (orientation of approach asymptote, earth- 
to-spacecraft plane) 

160 deg (angle between approach asymptote and 
earth-to-spacecraft vector) 

70 = 260 deg (orientation of approach asymptote, 
Canopus-to-spacecraft plane) 

[ c  = 100 deg (angle between approach asymptote and 
Canopus-to-spacecraft vector) 

T = 0 hr (the nominal time of spacecraft closest ap- 
proach to the planet, designated as 0 hr GMT) 

[E 

obl, = 1000.0 km 

ue0 = 10.0 deg 

uvm0 = 1.0m/sec 

aqEO = 0.1 deg 

ubEo = 0.01 deg 

urc0 = 0.01deg 

qc0 = 0.1 deg 

uTO = 6.0min 

The parameters V,, r lE ,  [ E ,  yC, and [c define the hyper- 
bolic excess velocity at Mars and the angles between the 
earth and the star Canopus. For a given launch date a t  
earth and arrival date at Mars, the parameters are ap- 
proximately determined and thus only a small uncertainty 
will exist. A larger uncertainty will exist in the parameters 
b and 0, which define how the spacecraft will pass the 
planet, and T, the precise time of arrival. 

B. Initial Uncertainty of Independent Variables 

As mentioned previously the starting time for the esti- 
mation program was selected to be 10 days before the 
spacecraft's closest approach to the planet. Also at this 
time, an initial covariance matrix was selected for the 
uncertainties of the independent variables. It was as- 
sumed that there was no correlation between the inde- 
pendent variables at the initial time. The initial covariance 
matrix for both range-rate and angular measurements is 

4 0  0 0 0 0 0 0 0 

0 u:o 0 0 0 0 0 0 

0 0 u;mo 0 0 0 0 0 

0 0 0 u;En 0 0 0 0 
0 0 0 0 OfE" 0 0 0 

0 0 0 0 0 of,, 0 0 

0 0 0 0 0  0 UGco 0 
0 0 0 0 0  0 0 

(34) 

For this problem the following initial standard devia- 
tions were assumed for the parameters: 

(35) 

The precise values used above could be debated, but the 
result of the incorrect convergence of 6 will not be altered 
as the standard deviations of Eqs. (35) are changed. 

C. Initial Estimated Values of Parameters 

The initial estimated values of the independent vari- 
ables at 10 days prior to closest approach were arbitrarily 
perturbed from the nominal values by approximately one 
standard deviation. The nominal value of a parameter 
corresponds to its actual value in the model. The esti- 
mated value corresponds to what it is thought to be. The 
initial values of the parameters are as follows: 

b, = 8000.0 

V,, = 7.001 km/sec 

= 30.1 deg 

[,, = 160.01 deg 

&I = 100.01deg 

vCI = 260.1deg 

T, = 6.0 min 

Several initial values for 6 were used in the study. 

D. Standard Deviations of Observables 

The two observables used in the study are earth-to- 
spacecraft range rate and the spacecraft-centered angle 
between the star Canopus and the target planet. For com- 
parison, results are presented for two standard deviations 
u,i of the data noise on the range-rate measurement. These 
are 0.001 m/sec and 0.01 m/sec for a 1-min For 
the angular measurement, a standard deviation up of 
0.01 deg is used for a 1-min   am pie.^ The covariance 

T h e  standard deviation of the data noise is expected to be within 
this range for future planetary missions. 
This value was estimated after conversing with a few people in- 
volved in approach guidance at the Jet Propulsion Laboratory. 
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matrix for the observables has the following form if both 
the range-rate and angular measurements (uncorrelated) 
are used: 

The quantity AT is the time in minutes by which the 
program is incremented along the spacecraft trajectory. 
The partial derivatives used in the A matrix of Section IV 
are computed at every time increment AT along the tra- 
jectory. The time increments used in the program vary 
from 1440 min at 10 days out, when the partial derivatives 
change very little, to about 0.2 min at closest approach, 
when the partial derivatives are erratic. A constant 1-min 
or smaller time increment AT is not used along the whole 
trajectory because of the excess time required for the 
machine calculations. 

E. Identification of Trajectory Runs 

The results of the orbit-determination program for the 
example trajectory are shown graphically in Figs. 12 
through 61 at the end of this section. Figures 12 and 13 
show the nominal values of range rate and angular mea- 
surement with time. The range rate shown on Fig. 12 is 
that attributed to the gravitational influence of Mars, 
i.e., V,,, * 8 given in Eq. (19). Figures 14-27 show the par- 
tial derivatives of range rate and the angular measure- 
ment with respect to the independent variables for the 
nominal trajectory. 

Figure 28 shows the initial aiming points for three 
cases plotted in Figs. 29 through 60. Figures 2944 show 
the estimation and standard deviations of the independent 
variables for a range-rate data noise of 0.001 m/sec (a;) 
for a 1-min sample. Figures 45-60 show the same for a 
range-rate data noise of 0.01 m/sec. The subscript labels 
1, 2, and 3 on the plots in these figures correspond to 
cases 1, 2, and 3 shown in Fig. 28 and are identified as 
follows: 

In case 1, the initial estimated value of 6 is equal 
to 23 deg at 10 days prior to planet closest approach, 
and only range-rate measurements are used. It is 
shown that for this case the value of 0 will con- 
verge correctly to its nominal value of 25 deg. 
Other variables will also converge to their nominal 
values. 

In case 2, the initial estimated value of 0 is equal 
to 38 deg at 10 days prior to planet closest ap- 

(3) 

proach, and again only range-rate measurements 
are used. However, for this case it is shown that the 
estimated value of 0 will converge to an incorrect 
image value of 35 deg. The other variables will 
converge to their nominal values. 

In case 3, the initial estimated value of 0 is again 
38 deg at 10 days prior to planet closest approach, 
but for this case both range-rate and angular mea- 
surements are used. This time it is shown that the 
estimated value of 8 will converge to its correct 
value of 25 deg. Again the other variables will 
converge to their nominal values. 

Note that the effect of the smaller data noise on range 
rate is to make convergence of the various parameters 
start a few hours earlier. Also, the effect of including the 
angular measurement with range rate is to make con- 
vergence of the parameters start a few days earlier; this 
effect is probably optimistic, since the model used does 
not contain noise in the measurement or biases in the 
measurement equipment. Figure 61 shows the estimated 
values of 0 as a function of time for several initial values 
of 0 and a range-rate data noise of 0.01 m/sec. 

F. Discussion of Ambiguity in Convergence of Orientation 
of the Trajectory Plane 

Special attention is called to Figs. 29 and 30, 45 and 46, 
and 61. These figures show the estimated values of 0 and 
the standard deviation as a function of time for various 
initial values of 0. Note that correct convergence results 
for case 1 (0,) of Figs. 29 and 30, and 45 and 46.s Case 1 
corresponds to an initial estimated value of 0 equal to 
23 deg (at 10 days prior to closest approach) using range 
rate as an observable. Note that for case 2 (e2), where 
the initial value of 0 is 38 deg, incorrect convergence 
results to a value of 35 deg instead of 25 deg. This 
value of 35 deg corresponds to the image aiming point 
(2vE - eN), where vE = 30 deg and en = 25 deg for the 
example problem. Both range-rate and the angular mea- 
surement are then used for case 3 (e3), using the same 
initial value for 0 of 38 deg that was used for case 2. Note 
that correct convergence results for this case. Another 
point of interest in Figs. 29 and 45 is the symmetry of 
the convergence of 6' as a function of time for cases 1 (e,) 
and 2 (QJ. Note that one appears to be the mirror image 
of the other. 

.'Convergence is assumed when the estimated parameter, such as e, 
approaches a value with a consistently decreasing value for the 
standard deviation of its uncertainty. 
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The bounds on the initial values of 0 for which con- 
vergence to the nominal or image aiming points will occur 
is the next point of interest. Several initial values for 0 
were run using an initial standard deviation of 10 deg 
and using only the range-rate measurements with a data 
noise of 0.01 m/sec. These are plotted in Fig. 61. Initial 
values of the other variables and their standard devia- 
tions were not altered. For the cases run, note that the 
initial 0 values of 38, 30, 27, and 25 deg approximately 
converge to the incorrect image value of 35 deg. The 
initial 0 values of 35, 32, and 22 deg converge to the 
correct value of 25 deg. The time-varying standard devi- 
ations of all the cases are about the same as that of cases l 
and 2 of Fig. 46. Also note in Fig. 61 that it is possible 

7.4 I I I I I I I I I I I  I 

for the initial estimated value of 0 (25 deg) to be almost 
correct and still converge to the incorrect image solution 
(35 deg). It is not clear why this takes place. However, 
from Fig. 61, once the estimated value of 0 crosses the 
approximate mid-point (0 = 30 deg) between the image 
and the nominal 8, the parameter then seems to eventu- 
ally converge to the other solution. 

The estimates of qE and qc of Figs. 35, 41, 51, and 57 
did not improve, since the standard deviation of 0 did 
not become less than the a priori standard deviations of 
qe and qc (0.1 deg). The angles vB and qc are linked with 
0 by the expressions cos (q8 - 0) and cos (qc - 0) of 
Eqs. (19) and (20). 

HOURS FROM CLOSEST APPROACH 

Fig. 12. Nominal range rate vs  time from 
closest approach 

1301 I I I I I I I I I I I  

HOURS FROM CLOSEST APPROACH 

Fig. 13. Nominal Canopus-spacecraft-Mars ang le  
(angular measurement) vs time from 

closest approach 

-10- 

-10- 

-10- 

I I I I I I I I I 

I I I I I I I I I 
-10 -9 -a -7 -6 -5 -4 -3 -2 - I  

DAYS BEFORE CLOSEST APPROACH 

Fig. 14. Partial derivative of range rate with respect 
to impact parameter b vs days before 

closest approach 
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3 -9 -8 -7 -6 -5 -4 -3 -2 -1 

DAYS BEFORE CLOSEST APPROACH 

TIME FROM CLOSEST APPROACH 
Fig. 16. Partial derivative of range rate with respect 

to trajectory-plane orientation 0 vs days 
before closest approach 

Fig. 15. Partial derivative of range rate with respect 
to impact parameter b vs time near 

closest approach 

-16’1 I I I 1 I I I 1 
-30-20 -10 0 10 20 30 

MINUTES HOURS 

TIME FROM CLOSEST APPROACH. 

Fig. 17. Partial derivative of range rate with respect 
to trajectory-plane orientation 0 vs time 

near closest approach 

> 
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BEFORE AFTER 

DAYS FROM CLOSEST APPROACH 

Fig. 18. Part ial derivative of  range rate with respect 
t o  hyperbolic excess speed V,  vs t ime from 

closest approach 

21 I I I I I I I I I 
-10 -8 -6 -4 -2 0 2 4 6 8 

BEFORE AFTER 

DAYS FROM CLOSEST APPROACH 

Fig. 19. Part ial derivative of  range rate w i t h  respect 
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Fig. 48. Standard deviation of impact parameter b vs time from closest approach for a(; = 0.01 m/sec 
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Fig. 56. Standard deviation of parameter Cc vs time from closest approach for u; = 0.01 m/sec 
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VI. Extension of Range-Rate Equation 

A. Derivation of New Range-Rate Equation 

and 

RP = 

In Section €1 the equation for range rate from earth to The parameters 5, and pp define the direction from the 
observer to the planet at a given time T.  These differ 
slightly from cE and pE7 which define the direction from 

the spacecraft was shown to be 

fi  = (-vE + v, + VS/P) - 8  (36) observer to spacecraft. Let 

The unit vector from earth to the spacecraft was ex- 
pressed as 

A A A A 
p = - C O S & s  f Sin&i)COSr]ET + sin5EsinpER 

A For the example problem, p was considered to be fixed Making the substitutions of Eqs. (lo), (l5), (38)~ (39b)7 

for small displacements of the spacecraft near the planet 
and also as the spacecraft approached the planet. Thus 
the parameters [ E  and pE were fixed. In order to consider 
a p that is not fixed, the form of the range-rate equation 

Range rate can then be expressed as 

and (40) into (37) yields 

p = - - (E, cos cp + cos a) V S  

P A 

will be changed to reveal more insight into the geometry. V T  + - (R, sin 5, cos p p  + T sin a cos e )  
P 

(37) V R  + -(Rpsin&sinyp + TsinasinB) 
P 

RP The vector p is defined as - -vv, cos [p 
P 

p = R , + r  

where 

K, = vector from the earth-based observer to the planet 
at a given time T 

r =radius vector from the planet to the spacecraft 
at the given time T 

From Eq. (15), 

A A A 
r =  -rcosa:S +rsinacosOT +rsinasinBR 

The vector from the earth to the planet is expressed in a 
similar manner to that of Eq. (3), which is 

R P  P 
p bV, 

+ - - {sin CP cos ( p p  - 0) [cos 01 - 11 - cos 5, sin 01} 
(38) 

where 
A 

A 

A 
(39b) i 

Rp*S = Rp (-COS&} 

Rp T = Rp {sin 5, cos p p }  

Rp R = R p  (sin tp sin p p }  

(41) 

Notice that Eq. (41) has a similar form to the simplified 
range-rate Eq. (12), except CP and p p  replace CE and p E .  
The parameters 5, and v p  vary slightly with time, but 
only depend on the position of the planet with respect 
to earth. Moving or displacing the spacecraft in space 
does not affect these two parameters. For the new expres- 
sion of Eq. (41), fi  is dependent on B by expressions other 
than cos ( p p  - e). Thus the time history of fi  past the 
planet will no longer have the precise identical values for 
& (7, - e)  for every approach direction of the trajectory; 
however, they will be very close. As the direction of the 
approach asymptote is varied, the closeness of the two 
range-rate histories for &(vp - 0) will vary. This will be 
discussed further in Section VI-B. 

The range p from the earth to the spacecraft given in 
Eq. (41) can be expressed as follows: 

p =  [P*PlS 
p = [(Rp + r)*(Rp + r)]S 
p = [R$ + r2 + 2r*Rp]H 
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Substituting Eqs. (15) and (39) into the above expression yields 

p =  [ R ~ + T ~ + ~ T R ~ C O S ~ C O S ~ ~ + ~ ~ R ~ S ~ ~ ~ ~ S ~ ~ ~ ~ C O S ( ( ~ ] ~ -  e) ]% 

Notice in Eq. (a), for earth-to-spacecraft range p, that 0 
only appears in the form cosl(qp - e). Thus the range p 
history will have the same values for &(qP - e). Thus if 
range is used as an observable, a problem similar to that 
encountered for range rate will occur in determining 
whether 8 = 4, or 9 = 27, - 0,. 

B. Survey of Vyious Directions of the Approach 
Asymptote S 

Upon surveying the effects on range rate of various 
approach directions of the spacecraft at tha planet, it 
was found that if the approach asymptote S ,  direction 
from earth to planet Rp, and velocity of planet with 
respect to earth ( - V ,  + V p )  are all coplanar, i will again 
depend on 0 only in the form of cos (qp - e). The co- 
planar relationship desired is demonstrated in Fig. 62. 
The requirement for the coplanar relationship is 

where 0 A vp  4 ZX. Recall that y p  is defined as the angle 
from the 'f axis to the projection of Rp onto the &,'f 
plane. If the value for V,. in Eq. (43) is substituted into 
Eq. (41), the result is 

VS ; = - - (Rp cos 5 p  + r cos a) 
P 

[Rps in& + rsincucos(qp - +- VR 
p sin q P  

The result derived is the range rate from earth to the 
spacecraft when the following three vectors are coplanar: 
(1) the instantaneous radius vector Rp from earth to the 
planet; (2) the instantaneous velocity of the planet with 

respect to earth ( - Y E  + Vp); (3) the direction of the 
approach asymptote S of the spacecraft at the planet. 

At the time T when the coplanar relationship exists, 
note from Eq. (44) that is only dependent on e by the 
function of cos (7, - e). Thus at this time T,  ,5 will have 
the same value for &(vp - e). The parameter Cp will be 
identically the same for any value of v p  or 0 at a given 
time T.  

If the coplanar relationship exists during the entire 
approach of the spacecraft to the planet, then at any 
time T,  j will have the same value for *(qp - e), since 
v p  will then be constant. This coplanar relationship will 
exist at any time T if: (1) the velocity of the planet with 
respect to earth (-V, + V,) is constant; or (2) if the 
change of this velocity with time remains in the same 
plane, i.e., the plane that contains the instantaneous 
velocity and the planet-to-earth vector. Both of these 
conditions are approximately satisfied. The velocity of 
the planet with respect to the earth ( - V ,  + V p )  will 
change very little over a time interval of a few days; the 
small velocity change that does occur over this time inter- 
val will be nearly directed in the plane that contains the 
instantaneous velocity ( -VE + V,) and the earth-to- 
planet direction. The latter should be true if the incli- 
nations of the heliocentric trajectory planes of the earth, 
the spacecraft, and the target planet are separated by only 
a few degrees, which is usually the case for low-energy 
ballistic trajectories to most of the planets. 

EARTH 

,. 
R 

Fig. 62. Description of coplanar relationship 
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VII. Conclusions and Extensions of Work 

A. Conclusions 

The analytical study presented in this report may be 
summarized as follows: 

1. Simple analytical equations are derived for the range 
rate of the spacecraft with respect to the earth during the 
planetary approach phase. Also, simple analytical equa- 
tions are derived for a spacecraft-centered angle between 
a body and the target planet. These expressions enable 
various orbit-determination studies to be easily performed. 

2. The geometrical symmetry of the earth-to-spacecraft 
range-rate time history was pointed out for trajectory- 
plane orientations on either side of the plane that con- 
tains the earth, the planet, and the direction of the 
approach asymptote of the near-planet trajectory. The 
assumption made is that the radius vector from earth 
to spacecraft remains constant during the planetary ap- 
proach. An extension of the analysis is shown in Section VI 
where the earth-to-spacecraft radius varies with aiming 
point and with time. 

3. Prior to this investigation, it was thought that the 
spacecraft range and range-rate time history past the 
planet was unique for every planet-centered trajectory- 
plane orientation or inclination chosen. 

4. The range-rate partial derivatives are derived for 
the case where the observer is located at the center of the 
earth, and the earth-to-spacecraft position vector is fixed 
during the approach phase and for displacements of the 
spacecraft as a result of rotating the trajectory plane. 

From the numerical results presented in Sections V 
and VI, the following conclusions can be drawn: 

1. Under the assumptions that the observer is located 
at the center of the earth and the spacecraft position 
vector relative to the earth is fixed, an orbit-determination 
program using range rate as an observable can converge 
to the incorrect image solution of the trajectory orienta- 
tion 6’ when the initial estimated value of e is such that 
the a priori dispersions of 9 encompass both the image 
and the nominal values of 8. 

2. The incorrect convergence can take place regardless 
of the size of the standard deviation of the data noise. 

3. By adding another observable, such as a spacecraft- 
centered angle between a star and the target planet, the 
program will converge to the correct nominal orientation 
of the trajectory plane. 

4. If the earth-to-spacecraft radius is not fixed near the 
target planet, then the earth-to-spacecraft range-rate time 
history will no longer be identical for & ( y p  - e), equal 
values of the trajectory orientation selected about the 
earth, planet, and approach-asymptote plane. 

5: An orbit-determination program might still converge 
to the incorrect trajectory orientation, however, since the 
differences are small. This is an area for further study. 

6. A special direction of the approach asymptote at the 
planet could still exist, however, which would again make 
the range-rate time history identical for equal values of 
the trajectory-plane orientation ( y p  - e)  symmetric 
about the earth, planet, and approach-asymptote plane. 
This approach direction must be such that the approach 
asymptote, the planet-to-earth vector, and the velocity of 
the planet with respect to earth are all coplanar. This 
situation occurs for specific trajectories to Mars in 1971. 
However, possible convergence to the incorrect trajectory 
orientation has not been demonstrated for this special 
situation and is also an area for further study. 

7. The geometrical symmetry of the earth-to-spacecraft 
range p was pointed out with the trajectory-plane orienta- 
tion ( y p  - e )  on either side of the plane that contains 
the earth, the planet, and the direction of the approach 
asymptote with respect to the planet. Thus the earth-to- 
spacecraft range was discarded as an additional observ- 
able in this investigation, since no additional knowledge 
would be gained in knowing which of the two trajectory 
planes the spacecraft might be on. 

B. Recommendations for Further Study 

The estimation of the trajectory orientation and the 
study of its incorrect convergence should be performed 
using a more precise model. The author considers this 
report to be only the first step. Additional steps to obtain 
a more precise model are as follows: 

1. Include a non-fixed direction from earth to the space- 
craft when the spacecraft is near the target planet. Pre- 
liminary equations for this step are derived in Section VI. 

2. Examine various directions of the spacecraft’s ap- 
proach asymptote at the target planet. One special direc- 
tion to examine is that in which the approach asymptote, 
the planet-to-earth vector, and the velocity of planet with 
respect to earth are all coplanar.6 

This geometrical relationship exists for typical trajectories from 
earth to Mars in 1971. 
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3. Include one or more rotating observers on the sur- 
face of the earth instead of putting the observer at the 
center of the earth. 

4. Include additional orbit-determination uncertainties 
in the study, such as an uncertainty in the gravitational 
constant of the planet, ephemeris uncertainties of the 
planet, station-location uncertainties of the observer on 
the surface of the earth, and the inclusion of data noise 
on the observables. 

If incorrect convergence still results for the trajectory- 
plane orientation after including the above changes to the 

model, additional observables can be utilized to alleviate 
the situation as was done in this report. Another possible 
method of alleviating the situation might be to start the 
estimation procedure near both the image and the nominal 
trajectory orientation and to compare the s u m  of the 
square of the residuals for the two converged cases. The 
converged trajectory with the lowest s u m  of the square 
of the residuals would then be assumed to be the correct 
one, since for this case the calculated trajectory would 
agree more nearly with the observed trajectory.7 

'This method was suggested by several engineers at the Jet Propul- 
sion Laboratory. Its feasibility is being studied by K. Russell. 
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Appendix A 

Description of Approach Asymptote and 

Hyperbolic Excess Velocity 

According to the two-body problem, the path of one 
body with respect to another due to the mutual gravita- 
tional attraction of the two bodies is an ellipse, parabola, 
or a hyperbola. If the motion of a small body (such as a 
spacecraft) originates outside the gravitational influence 
of the other body (such as a planet), the path of the space- 
craft with respect to the planet will be that of a hyperbola 
with the planet located at the focus. The incoming as- 
ymptote of this hyperbolic path is called the approach 
asymptote. The speed of the spacecraft with respect to 
the planet as it enters the gravitational influence of the 
planet is called the hyperbolic excess speed. At this time 
the direction of the spacecraft velocity with respect to the 
planet is along the approach asymptote. 

The direction and magnitude of the hyperbolic excess 
velocity is determined by subtracting the heliocentric 
velocity vector of the spacecraft at that time from the 
heliocentric velocity of the planet as shoAwn in Fig. A-1. 
If V, = V - V p ,  where V, = I V, 1 ,  then S is defined as 

The velocities of the spacecraft with respect to the sun 
and planet at arrival are uniquely determined for a given 
launch date at earth and arrival date at the planet. This 
is true because the heliocentric path of the spacecraft is 
uniquely determined by two radii from the sun to space- 
craft and the total transit time between the two points 
(Lambert’s theorem).. The two radii correspond to the 
heliocentric position vectors of the earth and planet at 
launch and arrival, respectively. 

Fixing the heliocentric trajectory of the spacecraft will 
then determine the heliocentric velocity V of the space- 
craft anywhere along its path. At a given time the velocity 
of the planet V p  is known. Thus the hyperbolic excess 
velocity, V, = V - Vp, of the spacecraft with respect to 
the target planet is uniquely determined by the launch 
date at earth and arrival date at the planet. A small un- 

PLANET 

Vm 

Fig. A-1 . Description of approach asymptote and 
hyperbolic excess velocity 

certainty in this velocity will exist due to the various 
perturbing influences and uncertainties. The hyperbolic 
excess velocity is almost constant, independent of which 
side of the planet the spacecraft will pass. Changing the 
flyby pass will change the heliocentric position of the 
spacecraft at amval by only a fraction of a percent. This 
small change will alter the spacecraft heliocentric velocity 
at amval and thus the hyperbolic excess velocity by an 
infinitesimal amount. 
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Appendix B 

Derivation of Radius Equation 

The radius of the spacecraft from the target planet can 
be expressed in terms of the target-centered angle a from 
the approach-asymptote direction to the spacecraft. This 
angle is more convenient than true anomaly v in the pre- 
sentation of the results. The hyperbolic conic equation for 
planet-to-spacecraft radius is 

b2 
a ( 1 +  ecosv) r =  

From Fig. B-1 

The angle y is equal to the true anomaly v of the space- 
craft when the spacecraft is an infinite distance away 
( r+  m). Making this substitution into Eq. (B-1) yields 

03-3) 
1 

cosy= -- e 

where (0 L y L T). Thus 

sin y = 4- 
Substituting Eq. (B-3) into (B-4) yields 

(33-4) 

Substituting Eqs. (B-2), (B-3), and (B-5) into (B-1) yields 

bz 
a (1 + dF? i s in  a: - cos a) r =  (B-6.) 

From analytical geometry 

Also 

c2 = a2 + b2 

c = ae 

APPROACH 
a 

ASYMPTOTE 

Fig. B-1. Definition of hyperbolic elements 

J P l  TECHNICAL REPORT 32- 1337 43 



Substituting Eq. (B-8) into B-7) yields 

q m = - -  b 
a (B-9) 

Substituting Eq. (B-9) into (B-6) yields 

L2 u 
(B-10) 
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